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Abstract. In this pap er, a stable Petrov-Galerkin formulation for the compressible Euler

equations is combined with a p-adaptive remeshing re�nement. The stability engendered

by this formulation allows using the same spatial interpolation or der in all the variables

even in the pr esence of ste ep gr adients. The result is an accurate and e�cient scheme

appropriated to solve pr oblemspr esentingshocks and boundary-layers.
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1. INTRODUCTION

In the last y ears, with the adven tof successful discretization methods and powerful

computer tec hnologies, computer simulation has been seen as a valuable approach for

solving complicated transport problems such as compressible ows in aerospace appli-

cations and many en vironmental problems. F orthese problems n umerical instabilities

leading to globally spurious oscillations can occur if an inappropriate approximation for

the conv ective term is done. Among the di�culties associated with numerical simulation

of compressible ows is the representation of shocks and boundary-lay ers. In those regions

of the uid ow, the variables in the system vary strongly, making the computation very

challenging. In that case, it is well known that the approximate solution obtained b y

using the standard Galerkin �nite element is completely spoiled b y spurious oscillations

that are spread all over the computational domain. In order to ov ercomeor, at least,

to minimize those oscillations many methods hav ebeen designed and we should mention

the P etrov-Galerkin models which modify the Galerkin's weighting functions b y adding

a perturbation term but k eeping the consistency property in the sense that the exact

solution satis�es the approximate problem. In the context of �nite element methods a

remarkable improv ement in the development of consistent, stable and accurate methods

for conv ection-dominatedproblems was provided b y the SUPG Method (Str eamlineUp-

wind Petrov-Galerkin Method) (Brooks and Hughes, 1982) which has good stability and



accuracy properties if the exact solution is regular and eliminates global pollutant e�ects

for non-regular solutions. However, Gibbs' phenomena may still appear in the vicinity of

sharp discontinuities such as shock waves. They can be completely prevented by using

the CAU Method (Consistent Approximate Upwind Method) (Almeida and Gale~ao, 1993),

which adds, in a consistent way, a non-linear perturbation that provides the control over

the derivatives in the direction of the generalized approximate gradient. The stability

enhancement allows the use of equal order interpolation in space for all the variables such

that the extension to high-order interpolation elements is straightorward. Usually, higher

than one interpolation orders are used only out of regions containing steep gradients be-

cause they produce or amplify instabilities in the approximate solution (de Cougny et al.,

1994; Bey and Oden, 1993). As the stability is guaranteed owing to the CAU method,

incorporating hierarchical element functions would enable hp-adaptive strategies which

have known advantages over h-adaptivity schemes in many cases. Indeed, it was shown in

(Almeida and Silva, 1997) that the use of p re�nement improves the approximate solution

in regions with discontinuities for the scalar convection-dominated convective di�usive

problems.

In this work, a CAU type method (RVCAU), derived in (Almeida and Silva, 1997) for

the scalar convection-di�usion problem is combined with a p-adaptivity scheme for solving

the steady state solution of the bidimensional compressible Euler equations. To guide the

adaptivity scheme, it is used an error indicator based on the norm used in (Hughes et al.,

1987) for the convergence analysis of the SUPG formulation for linear time-dependent

multidimensional advective-di�usive systems (Almeida and Gale~ao, 1996). The weak form

is based on the time-dicontinuous Galerkin with piecewise constant interpolation used in

time. With a single Newton step performed at each time, the steady-state solution is

rapidly reached maching in time.

An outline of this paper is as follows. In section 2 the ow problem under considera-

tion is described and the variational formulation for systems employing entropy variables

is presented. In section 3 the p-adaptive scheme is discussed. In section 4 numerical

experiments are conducted and the conclusions are drawn in section 5.

2. STATEMENT OF THE PROBLEM

In this work we are interested in �nding the steady state solution of the bi-dimensional

compressible Euler equations. In such nonlinear problems it is known that a good strategy

is to get the steady state solution from the limit solution of a time-dependent problem.

As we shall use this strategy here, we will consider �rst the following V-entropy variables

(Hughes et al., 1986) formulation for the incompletely parabolic Navier-Stokes equations:
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In the following we consider the compressible Euler equations as a particular case of the

Navier-Stokes equations when F �

i
and F h

i
vanish. The usage of these (physical) entropy



variables may be explained by the fact that the Galerkin formulation of the compressible

Navier-Stokes equations based on the conservative variables lacks certain properties which

are needed to establish stability proofs and convergence analysis (Shakib, 1985).

For the Euler equations let the approximated solution residual be
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as de�ned in (Shakib, 1985) - is the SUPG contribution. In (4), x0 = t, x
i
are the

cartesian coordinates and �
i
are the local element coordinates, i = 1; 2. Notice that the

SUPG operator here is acting over the generalized characteristics. Such approach seems

to be more appropriate when using the space-time formulation adopted in this work and

provides more stability to the weak form in transient problems (Hughes et al., 1987) (in the

next section, the de�nition of this intrinsic time scale function will be discussed as far as

higher interpolation element orders are concerned). The discontinuity-capturing operator

introduced by the CAU method corresponds to the third term in (3). � e
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In order to avoid the double e�ect when the approximate gradient direction coincides with

the generalized SUPG direction, we should subtract the projection of the SUPG operator
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3. THE ADAPTIVE REFINEMENT METHOD

The adaptive scheme combined with the CAU method consists in performing the

calculations beginning with an initial coarse mesh until the steady state is reached; then,

the error is estimated and, if the prescribed accuracy has not been satis�ed, a new mesh

is generated and the calculations are carried out using as initial condition the values of

the variables interpolated at the nodes on the new mesh. As our aim in this work is to

check the ability of high interpolation orders in representing regions with discontinuities,

only p-re�nement scheme is performed.

The convergence analysis of the generalized SUPG formulation for linear time-depen-

dent multidimensional advective-di�usive systems were performed in (Hughes et al., 1987)

yielding uniform error estimates analogous to the scalar convection-di�usion problem.

Indeed, the norm used in this case has the same features of its scalar counterpart. Then,

it seems quite natural to have an error indicator in this way, even for the nonlinear

compressible Euler equations. Thus, as �rst proposed in (Almeida and Gale~ao, 1996), for

each element e, e = 1; : : : (N
e
)
n

, the error indicator to be used in this paper is de�ned as:
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Here the adaptive strategy which seeks an optimal mesh in the sense that the error is

equally distributed for all elements is adopted. The desired error is denoted by
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where � is the speci�ed maximum admissible percentage error. The term under the

summation is an approximation for kV k
2
( V is the unknown exact solution) and k�k is

determined applying the same de�nition used for the error indicator (11).

In this work, the 2-D hp Adaptive Package (2DhpAP) developed in (Demkowicz et al.,

1992) is used. Its main features regarding p-adaptivity are as follows. During the p-

re�nement, the order of approximation for the element is increased by including polyno-

mials of higher order in the element shape functions. This, sometimes called p-enrichment,

may be done selectively for each of the element nodes as the order of approximation is

associated with a node rather than the element. This is done by de�ning a master element

on the basis of a right triangle with seven nodes: three vertices, three mid-side nodes and

one middle node. Each of the mid-side and the middle nodes may have a separate order

of approximation, denoted by p1; : : : ; p4, respectively. For each node the corresponding

shape function is introduced, i.e., linear shape functions for the three vertices, higher order

shape functions for mid-side nodes and for middle nodes. It should be remarked that these

mid-side nodes functions corresponding to one side vanish along the two remaining sides.

When complemented with the linear shape functions corresponding to the side endpoints,

they span polynomials of order p
i
. The middle node shape functions vanish along the

whole element boundary and the element shape functions, altogether, span polynomials

of order p = min(p1; p2; p3; p4): Notice that the shape functions corresponding to one node

are not required to be hierarchical in the sense that the shape functions of order p+1 are

constructed by adding additional (p+ 1)-order polynomials to shape functions of order p.

The main ingredient in combining p-adaptivity with the stabilized CAU method is

the choice of the matrix of intrinsic time scale: a proper evaluation of this parameter is

crucial to guarantee the desired accuracy. An interesting result presented in (Almeida and

Silva, 1997) for the scalar convection-di�usion problem shows that the upwind parameter

is very sensitive to the interpolation order of the element. This means that its de�nition

must depend on the interpolation order in each element. Many authors have de�ned such

dependence either heuristically (Shakib, 1985; Zienkiewicz and Taylor, 1988) or by studing

exact discrete solutions for the scalar convection-di�usion one-dimensional problem using

the SUPG with quadratic and hierarchical elements of order equal to two (Codina et al.,

1992).

For higher interpolation orders, it was numerically shown in (Almeida and Silva, 1997)

that this function should be reduced with the growth of the interpolation order of the

element about (p)
�1
. With this choice, either the regular solutions are acuratelly resolved
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Figura 1: Problem statement: reection shock against a wall

Figura 2: First mesh (341 nodes)

or the stability is kept for non regular solutions. Indeed, the use of higher-order elements

in regions with steep gradients successfully improve their representation. Here, this idea

is extended to the system of Euler equations. Both the matrix � e and the scalar � e
c

are divided by p = min(p1; p2; p3; p4). The results, that will be shown next section, are

promising.

4. NUMERICAL RESULTS

In this section some numerical results obtained by applying the proposed methodology

on the solution of a compressible Euler ow problem of the reection shock against a wall

are shown. This inviscid problem, presented in Fig. 1, deals with three regions where the

supersonic ow is constant which are separeted by shocks. The computational domain is

a rectangle with 4.1 and 1 of length in the x and y directions, respectively. Along the

inow AC all variables are �xed; along AD a slip boundary condition is enforced and

along DC all variables are left free.

Beginning with the mesh depicted in Fig. 2, sequential p-re�nements are performed

until re�nement level 4 is reached. This means that the maximum possible interpolation

order is p = 4. In Figs. 3 - 4 and 5 - 6 the meshes and the density solutions for the last

p-re�nement are shown, either introducing or not the reduction over the upwind terms,

respectively. The color scale in meshes graphics corresponds to polynomial degrees p

(darker colors corresponds to greater p). The overlapping colors mean the enrichment

of polynomial interfaces to mantain continuity of shape functions across interelement

boundaries.

The evolution of the adaptivity re�nement is shown in Figs. 7 and 8 where the

density line plots at y = 0:2 are depicted together with the exact solution when the



Figura 3: Final mesh without reduction (341 vertices, 448 mid-side nodes and 204 middle

nodes)

Figura 4: Final solution without reduction

Figura 5: Final mesh with reduction (341 vertices, 445 mid-side nodes and 180 middle

nodes)

Figura 6: Final solution with reduction
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Figura 7: Density line plots at y = 0:2 (no reduction)
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Figura 8: Density line plots at y = 0:2 (with reduction)

upwind reduction is not introduced and when it is applied, respectively. These cases are

compared in Fig. 9 for the last re�nement step. For the reduction case, the density pro�le

at y = 0:2 is also shown in Fig. 10 where the gray scale corresponds to polynomial degrees

p. These results point out the improvement in representing shocks when decreasing the

upwind terms with the increase of the interpolation order. Notice the improvement of the

shock representation with the increase of the degree p.

5. CONCLUSIONS

In this paper a stable Petrov-Galerkin method for solving the compressible Euler

equations written in entropy variables is combined with a p-adaptivity scheme. The good

stabilisation properties allow the use of higher interpolation elements in regions with

shocks. However, it is shown that the shock representation can be improved by modifying
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Figura 9: Comparison between the two strategies

the upwind terms with the growth of the element interpolation order. The numerical

results showed that this model is very stable, providing accurate approximate solutions

near shocks free of spurious oscillations.

Figura 10: Density pro�le at y = 0:2 (with reduction)
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